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Total synthesis of cis-solamin A, a mono-tetrahydrofuran
acetogenin isolated from Annona muricata
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Abstract

Total synthesis of cis-solamin A was accomplished without using protecting groups starting from (�)-muricatacin in 11 steps with an
overall yield of 4.5%. The backbone of cis-solamin A was constructed by olefin cross-metathesis between the tetrahydrofuran moiety and
c-lactone moiety. An enzymatic kinetic transesterification procedure was successfully applied to the synthesis of an optically pure
c-lactone moiety.
� 2007 Elsevier Ltd. All rights reserved.
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Annonaceous acetogenins1,2 are a series of polyethers
with antitumor, cytotoxic, antimalarial and antifeedant
properties, containing either adjacent or nonadjacent tetra-
hydrofuran (THF) or tetrahydropyran (THP) ring and an
a,b-unsaturated c-lactone ring. Acetogenins are thought
to interact with NADH–ubiquinone oxidoreductase (com-
plex I) in mammalian and insect mitochondrial elec-
tron transport systems and/or with ubiquinone-linked
NAD(P)H oxidase in cytoplasmic membranes of cancer
cells.3,4 cis-Solamin was isolated from the roots of Annnona

muricata by Gleye et al.5 (Fig. 1). The relative stereochem-
istry of the THF–diol part was determined to be threo–cis–

threo, and the absolute structure of cis-solamin was
expected to be either cis-solamin A (1) or cis-solamin B
(2). Because of diverse biological activities and a unique
biosynthetic mechanism, the total synthesis of cis-solamin
was conducted by four groups, Stark’s,6 Donohoe’s,7

Brown’s,8 and Makabe’s groups.9
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Synthetic cis-solamin A (1) and cis-solamin B (2) both
showed remarkable inhibitory effects against mitochondrial
complex I with an IC50 value of 2.2 and 2.1 nM, respec-
tively.9 In 2006, Hu et al. reported that natural cis-solamin
is a mixture of two tetra-epimeric diastereoisomers consist-
ing of cis-solamin A (1) and cis-solamin B (2).10 In the course
of our recent research regarding mitochondrial complex I
cis-solamin B (2)
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Fig. 1. cis-Solamin A (1) and cis-solamin B (2).
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Scheme 2. Synthesis of 3. Reagents and conditions: (a) (i) MsCl, Et3N,
CH2Cl2; (ii) DIBAL-H, THF, �40 �C, 57%; (b) (EtO)2P(O)CH2CHCH2,
n-BuLi, HMPA, THF, �40 �C–0 �C, 64%; (c) AD-mix b, MeSO2NH2,
t-BuOH/H2O, 0 �C. (d) p-TsOH (cat.), CH2Cl2, 52% (2 steps).
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inhibitors based on the acetogenin structures, we have
developed a simple route for the synthesis of mono-THF
acetogenins. We herein report a concise total synthesis of
cis-solamin A (1), which contains no protection/deprotec-
tion steps.

Our plan is shown in Scheme 1. The backbone of cis-sol-
amin A (1) is constructed via an olefin cross-metathesis11,12

of the THF–allylic alcohol (3) and the c-lactone moiety
with the terminal double bond (5). For the metathesis reac-
tion, an allylic alcohol (3) containing unprotected hydroxy
groups is employed, and thus alcohol (3) is prepared from a
known compound, (�)-muricatacin (4),14 via Horner
Emmons type olefination followed by an asymmetric
dihydroxylation without protecting the specific hydroxy
groups. The metathesis counterpart c-lactone (5) is synthe-
sized by the alkylation of an enantiopure hydroxy lactone
(6), which is prepared by an enzymatic kinetic transesterifi-
cation15 of the racemic lactone {(±)-6}. Since the racemic
lactone {(±)-6} can be easily obtained by two-step reac-
tions from commercially available trans-3-pentenenitrile,
the enzymatic route can provide an optically pure lac-
tone15,16 with practical procedures. Thus, no protection/
deprotection procedures are necessary throughout the syn-
thesis, which makes the present synthesis concise.13

The synthesis of THF–allylic alcohol (3) is shown in
Scheme 2. (�)-Muricatacin (4) was converted to a mesyl
compound using MsCl/Et3N and the subsequent reduction
with DIBAL-H in THF gave hemiacetal (7) in 57% yield
over two steps. Horner Emmons type olefination and epox-
idation of hemiacetal (7) using an excess of the lithium salt
of diethyl allylphosphate gave an epoxy-E-diene (8) with a
ratio of more than 20:1 (E:Z) in 64% overall yield as an
inseparable mixture. Asymmetric dihydroxylation (AD-
mix b)16 of epoxy-E-diene (8) and subsequent treatment
with a catalytic amount of p-TsOH in CH2Cl2 afforded
the desired THF–allylic alcohol (3) as a major product in
cis-solamin (1)
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Scheme 1. Synthetic plan for cis-solamin A (1).
52% yield with a minor regioisomer (26% yield). The dia-
stereomeric excess of 3 was determined to be >98% de.
Using this route, THF–allylic alcohol analogues diverse
in stereostructures could be similarly prepared by the
specific combination of muricatacin analogues and asym-
metric dihydroxylation reagents.

Optically active c-lactone {(�)-6} was prepared by
employing a lipase-mediated kinetic transesterification.15

The necessary racemic substrate {(±)-6} was synthesized
by the OsO4-catalyzed dihydroxylation of commercially
available trans-3-pentenenitrile and subsequent hydro-
lysis–lactonization (6 N HCl at 80 �C) in 62% overall yield.
After extensive investigation of a variety of lipases under
different conditions, we found Novozyme (Candida antarc-
tica, Novo) provided the best results concerning both con-
version yield and enantioselectivity. With 4 h of treatment
with Novozyme in the presence of vinyl acetate in toluene
containing 5% Et3N,17 hydroxy lactone {(±)-6} gave acet-
oxy lactone {(+)-9} and hydroxy lactone {(�)-6} in nearly
quantitative yields with high enantiomeric excess18,19

(Table 1, entry 7).
To determine the absolute configuration of the resolu-

tion products, hydroxy lactone {(�)-6} was converted to
squamostanal-A (13),20 an oxidative degradation product
of acetogenins isolated from Annona squamosa L. (Scheme
3). Alkylation of the sodium enolate of the hydroxy lactone
{(�)-6} with 13-tetradecenyl iodide (10) gave 11 in 80%
yield as a diastereomeric mixture (10:1). Treatment of 11

with MsCl/Et3N in CH2Cl2 and the addition of DBU
in situ at room temperature afforded unsaturated c-lactone
(12) in 94% yield as a single product. Oxidative cleavage of
the terminal double bond of 12 by treatment with catalytic
OsO4/co-oxidant NMO and the addition of NaIO4 affor-
ded squamostanal-A (13) in 76% yield. The specific
rotation of synthetic 13 (½a�28

D +24) is nearly identical to
the authentic value (½a�28

D +21). Spectroscopic data for the
synthetic squamostanal-A (13) were also identical to those
for the authentic sample.21 Thus, the absolute configura-
tion of the hydroxy lactone obtained by the kinetic transe-
sterification was confirmed undoubtedly to be {(�)-6}.
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Scheme 4. Total synthesis of cis-solamin A (1). Reagents and conditions:
(a) CH2CH(CH2)10I (14), NaHMDS, THF, �78 �C–rt, 84%; (b) MsCl,
Et3N, CH2Cl2, 0 �C–rt then DBU, rt, 92%; (c) 3, Grubbs’ catalyst (2nd
generation), CH2Cl2, 40 �C, 12 h, 52%; (d) p-TsNHNH2, NaOAc, ethylene
glycol dimethyl ether, reflux, 95%.

Table 1
Kinetic transesterification of racemic-6

Novozyme
CN

1) OsO4 (cat.), NMO
    t-BuOH/H2O
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O
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HO

+

AcO

(+)-9 (-)-6

2) 6N HCl
    1,4-dioxane

OAc

(±) -6
Et3N

Entry Solvent Time (h) Acetate (+)-9 Alcohol (�)-6

Yielda (%) eeb (%) Yielda (%) eeb (%)

1 None 4 46 77 52 82
2 THF 4 34 90 45 82
3 MeCN 4 24 83 68 32
4 CH2Cl2 4 28 95 43 95
5 t-BuOMe 4 44 95 48 98
6 AcOEt 4 49 98 50 98
7 Toluene 4 48 98 50 99

a Isolation yield after silica gel chromatography.
b Determined by HPLC using CHIRALCEL OD-H column (hexane–i-PrOH, 90:10) after transformation to the corresponding benzoate.
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Scheme 3. Synthesis of squamostanal-A (13). Reagents and conditions:
(a) CH2CH(CH2)12I (10), NaHMDS, THF, �78 �C–rt, 80%; (b) MsCl,
Et3N, CH2Cl2, 0 �C–rt then DBU, rt, 94%; (c) OsO4 (cat.), NMO, THF/
H2O, 0 �C–rt, then NaIO4, rt, 76%.
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cis-Solamin A (1) was synthesized according to the route
shown in Scheme 4. The coupling of hydroxy lactone {(�)-
6} and iodide (14), and subsequent conversion to unsatu-
rated lactone (5) was conducted in a similar manner as in
Scheme 3. A cross metathesis reaction of THF–allylic alco-
hol (3) and unsaturated lactone (5) with Grubbs’ catalyst
(second generation) in CH2Cl2 proceeded at 40 �C to give
the desired 16 as a single E-isomer in 52% yield (78% yield
based on the starting material 3 consumed) as well as the
lactone homo-dimer (ca. 20% yield). Finally, selective
hydrogenation of the double bond with pTsNHNH2

22 gave
cis-solamin A (1) in 95% yield. Spectroscopic data for the
product were identical with those reported by Makabe
and co-workers.9

In conclusion, we have achieved the total synthesis of
cis-solamin A (1), using a practical route containing no
protection/deprotection steps. The route should be effective
for the construction of acetogenin libraries diverse in
stereochemistry around hydroxylated THF rings as well
as alkyl chain lengths. Extensions to structure–activity rela-
tionship studies on inhibitory activities of acetogenins
against mitochondrial complex I will be reported in due
course.
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